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Abstract

Stoichiometric constraints-based models are an alternative

to kinetic models when analyzing large-scale networks. Two

analytic tools used in this type of modeling are Flux Balance

Analysis (FBA) and Energy Balance Analysis (EBA), which

use mass and energy balance constraints, respectively, to

study the steady-state behavior of reaction networks. Such

analysis has proven useful and successful, for example, when

modeling cellular metabolism.



Large-Scale Complex Networks
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Sigma

• A reaction network is typically

very complex.

• Reaction rate constants are

usually all unknown.

• ODE’s describing the kinetics

contain nonlinear terms.

• Unable to find analytic

solutions.



Elementary Chemical Reaction
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General Chemical Reaction

If we have M reactions involving N species:
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Enzyme Driven Reaction Kinetics
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First step is rapid. Enzyme forms an intermediate complex

which changes slowly relative to the rate of change of s and

p. So we have coupled differential equations:
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If we assume S is continuously supplied to the system and P

is continuously taken out of the system, each at some rate

J, then we arrive at steady-state when:
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where (eo) = (e)+(es) is the total concentration of enzyme

(free and bound).

Note that if J = 0 this method predicts chemical equilibrium

when:
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The Stoichiometry-Based Model

Instead of representing the ODE’s as:
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We can simplify our model to:
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where S is the N ×M stoichiometry matrix and J = J+−J−

is the M-dimensional flux vector with
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Including External Fluxes

In the case of an open system which has external injection

fluxes of species, for example:
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 C
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Stability of the Network

“The key idea upon which the theory of stoichiometric

dynamical systems is built is that in general the complete

set of steady states can easily be calculated. It can always

be represented parametrically in a simple form. Once this is

done, any static or dynamical property that can be related to

the steady states is ripe for investigation.” - Bruce L. Clark



Extensions to Ecology and Economics

The idea of stoichiometric modeling can be extended to

many ecological and economic models as well, as long as

the stoichiometries are real numbers and the reaction rates

are proportional to continuous functions which are positive

in the interior of the domain.



For the General Model

For reactions in chemistry and interactions, birth processes,

death processes, and immigrations in ecology:
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For Chemical Reaction Networks

We have certain relationships between the matricies:

B = D = H−G

Equilibrium always exists with J+ = J− ≥ 0. The linear

stability is determined by the Jacobian matrix which can be

shown to have all real, non-positive eigenvalues.



Equilibrium vs. Non-equilibrium

Steady-State

If there is no external flux, then the system of reactions is at

equilibruim when SJ = 0. However, if there are external

fluxes acting on the system, then the system is at

non-equilibrium steady-state (NESS) when SJ = −Je.



Kirchoff’s Current Law and Flux

Balance Analysis

Current Law: At any junction, the sum of the currents into

that junction is zero.

J
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d

J = Ju + Jd

Any flux, J, which satisfies the equilibrium or NESS

conditions satisfies the flux balance condition.



Kirchoff’s Voltage Law

Voltage Law: The change in potential, when summed

around any loop within a circuit, is zero.
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Thermodynamics

If the chemical potential difference for each internal reaction

is defined as ∆G then from thermodynamics we know, for

the sample reaction:

α1A+α2B 
 α3C +α4D

∆G = ∆Go + kBT ln
cα3dα4

aα1bα2

and

∆Go = −kBT ln
k+

k−
Therefore,

∆G = kBT ln
J−
J+



Singular Value Decomposition
Consider now, only the internal reactions without the

external fluxes. By using Singular Value Decomposition

(SVD), we can decompose S such that S = D∑BT. ∑ is the

diagonal matrix containing the singular values of S and has

the form:

∑ =







σ1 . . . 0 0 . . . 0
... . . . ... ... . . . ...

0 . . . σN 0 . . . 0






,

the columns D contain the left singular vectors of S, and B

is the inverse of the matrix which has columns containing

the right singular vectors of S.



Energy Balance Analysis

If S has rank r then columns r +1 through M of B span the

null-space of S. So we can define K such that

K =
(

B(:,r +1) . . .B(:,M)
)

Then each row of K provides the exact weights needed to

balance the internal chemical reactions of the network.



Energy Balance Analysis

Relating back to the thermodynamics, let us define the

chemical potential of each reactant i as Gi. Then the

chemical potential of each reaction is given by:
N

∑
i=1

GiS
j
i = ∆G j

and multiplying by K on the right we have:

GT SK = ∆GT K = 0

which is a statement of global free energy balance for the

network and is equivalent to Kirchoff’s voltage law.



Second Law of Thermodynamics

The second law of thermodynamics requires that each

reaction must dissipate energy. Therefore, if terms of J j,

which is the turnover per unit time, and ∆G j, which is the

chemical potential change of turnover, we have:

−J j∆G j = −kBT (J j
+− J j

−) ln
J j
−

J j
+

≥ 0.

By summing over all reactions, this formula can be used to

compute the total heat dissipation rate, which is necessarily

equal to the entropy production rate of the isothermal

biochemical network in a steady-state.


